КОМПЛЕКСНЫЕ ЧИСЛА

Скачать презентацию на тему: "КОМПЛЕКСНЫЕ ЧИСЛА" с количеством слайдов в размере 8 страниц. У нас вы найдете презентацию на любую тему и для каждого класса школьной программы. Мы уверены, что наши слайды помогут найти вам свою аудиторию. Весь материал предоставлен бесплатно, в знак благодарности мы просим Вас поделиться ссылками в социальных сетях и по возможности добавьте наш сайт MirPpt.ru в закладки.

Нажмите для просмотра
КОМПЛЕКСНЫЕ ЧИСЛА

1: КОМПЛЕКСНЫЕ ЧИСЛА

2: N C Z C Q C R C C N- natural R- real C - complex Z – исключительная роль нуля zero Q – quotient отношение ( т. к. рациональные числа – m/n)

3: Минимальные условия комплексного числа 1) Существует число, квадрат которого -1. 2) Множество комплексных чисел содержит все действительные числа. 3) Операции сложения, вычитания, умножения и деления комплексных чисел удовлетворяет обычным законом арифметических действий.

4: Элемент, квадрат которого равен -1 называется мнимой единицей. Обозначается i (переводится «мнимый», «воображаемый»)      "Комплексными числами и функциями комплексного переменного математики пользовались в своих исследованиях уже в XVIII в. Особенно велики заслуги крупнейшего математика XVIII в. Леонарда Эйлера (1707—1783), который по праву считается одним из творцов теории функций комплексного переменного. В замечательных работах Эйлера детально изучены элементарные функции комплексного переменного.       После Эйлера открытые им результаты и методы развивались, совершенствовались и систематизировались, и в первой половине XIX в. теория функций комплексного переменного оформилась как важнейшая отрасль математического анализа. "Первое упоминание о «мнимых» числах как о корнях квадратных и» отрицательных чисел относится еще к XVI в. (Дж. К а р д а н о, 1545). До середины XVIII в. комплексные числа появляются лишь эпизодически в трудах отдельных математиков (И. Ньютон, Н. Бернулли, А. Клеро). Первое изложение теории комплексных чисел на русском языке принадлежит Л. Эйлеру («Алгебра», Петербург, 1763, позднее книга была переведена на иностранные языки и многократно переиздавалась): символ «i» также введен Л. Эйлером. Геометрическая интерпретация комплексных чисел относится к концу XVIII в. (датчанин Каспар Вессель, 1799 г. ). "

5: Условия про операции комплексных чисел позволяют умножать комплексные числа на мнимую единицу ( i ). Такое произведение называют чисто мнимыми числами. Например: i, 2i, -0,3i – чисто мнимые числа. 3i 13i(313)i 16i 3i13i (313) (ii)39i2-39 ПРАВИЛА АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ 10 aibi(ab)i 20 a(bi)(ab)i 30 (ai)(bi)abi2 -ab 40 0i 0

6:

7: Кк КОМПЛЕКСНЫЕ ЧИСЛА РАВНЫ, КОГДА РАВНЫ ИХ ДЕЙСТВИТЕЛЬНЫЕ И МНИМЫЕ ЧАСТИ. abicdi, если ac, bd

8:

Скачать презентацию


MirPpt.ru