Теорема Виета

Скачать презентацию на тему: "Теорема Виета" с количеством слайдов в размере 8 страниц. У нас вы найдете презентацию на любую тему и для каждого класса школьной программы. Мы уверены, что наши слайды помогут найти вам свою аудиторию. Весь материал предоставлен бесплатно, в знак благодарности мы просим Вас поделиться ссылками в социальных сетях и по возможности добавьте наш сайт MirPpt.ru в закладки.

Нажмите для просмотра
Теорема Виета

1: Теорема Виета

2: Квадратное уравнение Квадратным уравнением называется уравнение вида ax2bxc0, где a, b, с R (a 0). Числа a, b, с носят следующие названия: a - первый коэффициент, b - второй коэффициент, с - свободный член.

3: Приведенное уравнение Если в уравнении вида: ax2bxc0, где a, b, с R а 1, то квадратное уравнение вида x2pxq0 называется приведенным.

4: Теорема Виета Сумма корней приведенного квадратного трехчлена x2  px  q 0  равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q. Т. е.   x1  x2  – p  и   x1 x2  q

5: Применение теоремы Виета Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1  x2 и x1 x2.

6: Вычисление корней Так, еще не зная, как вычислить корни уравнения: x2  2x – 8  0, мы, тем не менее, можем сказать, что их сумма должна быть равна – 2, а произведение должно равняться –8.

7: Пример Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x2 – 7x  10  0, можно начать с того, чтобы попытаться разложить свободный член (число 10) на два множителя так, чтобы их сумма равнялась бы числу 7.

8: Решение Это разложение очевидно: 10  5  2, 5  2  7. Отсюда должно следовать, что числа 2 и 5 являются искомыми корнями.

Скачать презентацию


MirPpt.ru