Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний

Скачать презентацию на тему: "Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний" с количеством слайдов в размере 13 страниц. У нас вы найдете презентацию на любую тему и для каждого класса школьной программы. Мы уверены, что наши слайды помогут найти вам свою аудиторию. Весь материал предоставлен бесплатно, в знак благодарности мы просим Вас поделиться ссылками в социальных сетях и по возможности добавьте наш сайт MirPpt.ru в закладки.

Нажмите для просмотра
Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний

1: Колебательные процессы.

2: Свободные колебания реальных систем всегда затухают. Затухание обусловлено в основном трением (механические системы) и сопротивлением ( в электромагнитных колебательных контурах). Свободные колебания реальных систем всегда затухают. Затухание обусловлено в основном трением (механические системы) и сопротивлением ( в электромагнитных колебательных контурах). Колебательная система называется линейной, если её свойства не меняются при колебаниях, то есть такие параметры, как сила тяжести, упругость пружины, сопротивление, емкость, индуктивность не зависят ни от смещения, ни от скорости, ни от ускорения колеблющейся величины. В дальнейшем мы будем рассматривать только линейные системы.

3: Уравнения затухающих колебаний Получим дифференциальное уравнение свободных затухающих колебаний на примере реального пружинного маятника, совершающего колебания в среде с сопротивлением (простейший случай - трение о воздух). Пусть масса маятника m, коэффициент упругости пружины k, сила сопротивления, действующая на маятник, F - bv, v - скорость маятника, b - коэффициент сопротивления среды, в которой находится маятник. Так как мы рассматриваем только линейные системы, b const, k const. x - смещение маятника от положения равновесия. Второй закон Ньютона в нашем случае запишется так:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

Скачать презентацию


MirPpt.ru