Треугольник Паскаля

Скачать презентацию на тему: "Треугольник Паскаля" с количеством слайдов в размере 23 страниц. У нас вы найдете презентацию на любую тему и для каждого класса школьной программы. Мы уверены, что наши слайды помогут найти вам свою аудиторию. Весь материал предоставлен бесплатно, в знак благодарности мы просим Вас поделиться ссылками в социальных сетях и по возможности добавьте наш сайт MirPpt.ru в закладки.

Нажмите для просмотра
Треугольник Паскаля

1: Презентация Муштакова Александра

2: 1. Выявить свойства чисел, входящих в состав треугольника Паскаля 1. Выявить свойства чисел, входящих в состав треугольника Паскаля 2. Определить применение свойств чисел треугольника Паскаля 3. Сформулировать вывод и итоги исследования

3: Привести достаточное количество Привести достаточное количество примеров свойств чисел треугольника Паскаля и примеров применения треугольника для доказательства гипотезы.

4: Если числа треугольника Паскаля обладают особыми свойствами, то его можно считать волшебным.

5:

6: "Треугольник Паскаля так прост, "Треугольник Паскаля так прост, что выписать его сможет даже десятилетний ребенок. В тоже время он таит в себе неисчерпаемые сокровища и связывает воедино различные аспекты математики, не имеющие на первый взгляд между собой ничего общего. Столь необычные свойства позволяют считать треугольник Паскаля одной из наиболее изящных схем во всей математике".  

7: ТРЕУГОЛЬНИК ПАСКАЛЯ —это бесконечная числовая таблица "треугольной формы", в которой по боковым сторонам стоят единицы и всякое число, кроме этих боковых единиц. 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 . . . . . . . . . . . . . . .  

8:

9: Каждое число Каждое число равно сумме двух расположенных над ним чисел.

10: Свойство 1: Каждое число А в таблице равно сумме чисел предшествующего вертикального ряда, начиная с самого верхнего вплоть до стоящего непосредственно левее числа А. Свойство 1: Каждое число А в таблице равно сумме чисел предшествующего вертикального ряда, начиная с самого верхнего вплоть до стоящего непосредственно левее числа А.

11:

12: Треугольные числа показывают, сколько касающихся кружков можно расположить в виде треугольника Треугольные числа показывают, сколько касающихся кружков можно расположить в виде треугольника

13: Следующая зеленая Следующая зеленая линия покажет нам тетраэдральные числа - один шар мы можем положить на три – итого четыре, под три подложим шесть итого десять, и так далее.

14: Следующая зеленая линия продемонстрирует попытку выкладывания гипертетраэдра в четырехмерном пространстве - один шар касается четырех, а те, в свою очередь, десяти. . .

15: В нашем мире такое невозможно, только в В нашем мире такое невозможно, только в четырехмерном, виртуальном. И тем более пятимерный тетраэдр, о котором свидетельствует следующая зеленая линия, он может существовать только в рассуждениях топологов… или фантастов.

16: Это тоже треугольные числа, но одномерные, показывающие, сколько шаров можно выложить вдоль линии - сколько есть, столько и выложите. Если уж идти до конца, то самый верхний ряд из единиц - это тоже треугольные числа в нульмерном пространстве - сколько бы шаров мы не взяли - больше одного расположить не сможем, ибо просто негде - нет ни длины, ни ширины, ни высоты. Это тоже треугольные числа, но одномерные, показывающие, сколько шаров можно выложить вдоль линии - сколько есть, столько и выложите. Если уж идти до конца, то самый верхний ряд из единиц - это тоже треугольные числа в нульмерном пространстве - сколько бы шаров мы не взяли - больше одного расположить не сможем, ибо просто негде - нет ни длины, ни ширины, ни высоты.

17: Заменим каждое число в треугольнике Паскаля точкой. Причем, нечетные точки выведем контрастным цветом, а четные - прозрачным, или цветом фона. Результат окажется непредсказуемо- удивительным: треугольник Паскаля разобьется на более мелкие треугольники, образующие изящный узор.

18:

19: Пусть, например, мы хотим Пусть, например, мы хотим вычислить сумму чисел натурального ряда от 1 до 9. "Спустившись" по диагонали До числа 9, мы увидим слева снизу от него число 45. Оно то и дает искомую сумму.

20:

21: Предположим , что некий шейх, следуя законам гостеприимства, решает отдать вам трех из семи своих жен. Сколько различных выборов вы можете сделать среди прекрасных обитательниц гарема? Для ответа на этот волнующий вопрос необходимо лишь найти число, стоящее на пересечении диагонали 3 и строки 7: оно оказывается равным 35. Предположим , что некий шейх, следуя законам гостеприимства, решает отдать вам трех из семи своих жен. Сколько различных выборов вы можете сделать среди прекрасных обитательниц гарема? Для ответа на этот волнующий вопрос необходимо лишь найти число, стоящее на пересечении диагонали 3 и строки 7: оно оказывается равным 35.

22:

23: ОБЛАДАЯ ТАКИМИ СВОЙСТВАМИ, ТРЕУГОЛЬНИК МОЖЕТ НАЗЫВАТЬСЯ ВОЛШЕБНЫМ ОБЛАДАЯ ТАКИМИ СВОЙСТВАМИ, ТРЕУГОЛЬНИК МОЖЕТ НАЗЫВАТЬСЯ ВОЛШЕБНЫМ

Скачать презентацию


MirPpt.ru